How to Cut Labor Cost in Half or Produce with Half Absent

Right now, use these labor principles to

Then Design products to:

This page shows many ways how to get back to work fast with the most efficient use of available labor with the least skill demands and leasste absence vulnerabilities.   Strategies are on the companion page:  http://www.design4manufacturability.com/downturn_strategy.htm .   All pages on alll sites now start with the following slogan:

It is Time to Learn New Ways* to Design & Build 

and Stop doing what gets in the  way!

* The 590 page 2020 book has 814 topic section

Maximize production rates and order fulfillment by probatively dealing with worker shortages and avoiding workforce disruptions and interruptions (like sick-leave, isolation requirements, and worker spacing mandates) by the following DFM techniques:

Rationalize Away Resource-Draining Products & Endeavors

Use rationalization principles (see Appendix A in the DFM book editions)  to immediately help back to work ny.

-Drop money-losing products and variations and be sure to:
        Donít  take all orders!

- Use Mass Customization and Product Families  for customizations and product variations.
            "Donít accept all customizations!

Use scarce labor for only the most profitable actions; donít waste them on the "losers"

If your cost system canít identify money-losers, then conduct surveys, where operations people vote for and rank products, as shown in Section A.9.3, step 3. 3. "Conduct Polls and Surveys" in all editions of the DFM book. In this discussion at one company, the most experienced worker, brought back from retirement, said, in a determined voice: "Give me five; you can have the rest."

In this day and age, the  most effective way to handle labor shortages, absenteeism, and long sick-leave, immediately is  to :  Rationalize away the "loser" products that have high labor demands for no profit.  Fortunately, the biggest resistance to Rationalization - lowering sales -- is not an issue in a downturn - so go for it now.


Use Lean Production to Banish Waste and:

"Double labor productivity all the way through the system."

This quote is from page 27 of the Womack & Jones definitive book: "Lean Thinking; Banish Waste and Create Wealth in Your Corporation."  The first words of the sub-title are "Banish Waste," which is very important you don't has extra resources to waste.

You may not have to start Lean from scratch.  Just give a green light to your own champions.


Cutting in half manufacturing labor  needs with DFM:

Minimizing skill demands for manufacturability and variety (see below)

DFM Guidelines to reduce labor, such as:

Design simplicity, such as fewer parts, combining parts, simpler designs, and breakthrough concepts, with two examples shown in the article on Designing low-cost products.

CNC Machining with rapid positioning and workholding (many whole books are readily available on both of these)

Part fabrication all done on one chucking as recommenced in Guideline P14; see Section 9.2 "DFM for Fabricated Parts," in the authorís DFM book.

Utilize greater labor efficiency with readily available at Vendor/Partners which is much more efficient because of all the reasons on this article and Section 2.6 of the DFM book.

Utilize greater labor efficiencies from  Offf-the-Shelf parts , where is much more efficiency for many reasons decimated at in Section 5.18 of the DM book.   And if purchased parts are standard, the labor savings are exponentially greater compared to the usual proliferations of pats.

Obey all process guidelines, which will make the design faster and avoid all labor hours  wasted to fix problems later.

Avoid labor-intensive designs like wiring a machine "like a house" with many point-to-point connections or even hand-built wiring harnesses, the tooling of which is usually nails on a sheet of plywood, even if you outsource it to a "specialist," which can cause serious delays during times of "supply chain interruptions."  Instead, integrate electronics into the fewest printed circuit boards and connect them with:

  • - direct connection blocks
  • - Standard card cages, which enables the use of off-the-shelf "single board computers" instead of using up all the extra labor do design and build them.
  • - connect all components and devices in the system to a flexible "flex layer" that spans multiple circuit boards and devices.

Do-it-right-the-first-time to avoid revisions, iterations, and difficult ramps, shown in two graphs at
http://www.design4manufacturability.com/half-the-time.htm or Figures 2.1 and 3.1 in all editions of the DFM book.



Cross-training is Lean Production technique that, once done, will ensure that product lines and cells will continue building high-quality products without delays, even if some workers can not come to work for quite a while.

This avoids situations where one worker, who has a unique skill can shut down a line or cell s long as that worker can not come to work.


The cross-training is an excellent activity that can be done during  a downturn or full factory interruption or any time workers can not come to work. This is easier to do when the training can be dome remotely. This is especially valuable during any situation that might keep key workers from coming to work

Concurrent Engineering can ensure that the product itself is designed so that all the workers can do all the tasks to build it.


Offshoring Creates Designs that have Labor Vulnerabilities

 Avoid offshoring or justify bringing it back as shown in the article:  
"The Case Against Offshoring and What to replace it withí

When companies "chase cheap labor around the world" (offshoring), that can allow, or even encourage, a design laxity that says "skill demands donít matter" because labor is so cheap that a specialized workers can be trained to do every difficult task! And if that takes a long time or has a high quality costs, that doesnít matter either becuse labor is perceived to be so cheap.  Nor do any imbalances with adjacent tasks in a line, so that precludes the cornerstone of Lean Production: one-piece-flow, as summarized in Section 4.1.1. of the DFM book.

Unfortunately, armies of specialists are vulnerable to work force disruptions, interruptions, not being able to get to work, and high turnover, which is very common overseas, and needs a lot of retraining of these specialists.

All this is the opposite of everything recommenced in the previous section on Cross-Training. And if this is a problem with existing designs, then the company will have to design new products for low skill demands (next) 


How to minimize skill demands by design

(this is the best treatment anywhere)

Skill demands as should be an early criterion for product concept generation and section. which determines 60% of cost.


Minimize part complexity with:

Instructions are clear and easy to understand and are obvious, intuitive, graphical, animated, and, if text, in the predominant language(s) spoken on the floor. Accessing computerized instructions should not require computer skills or on-line abilities. Instead have workers wand bar codes, which then immediately pull up instructions for that part at that work-station.

Production mahines themselves sholld be easy to use with a user interface that is clear, easy to learn, easy to use, and doesnít need computer skills, for instance, using bar codes to change machine settings for each task.

Avoid the need for "tribal lore" with accurate, complete and unambiguous design documentation.  This is a bad enogh problem when everyone can come to work, but is much worse at a tiime of worker shortages and absenteeism. 

No manual alignment, complicated procedures, calibration,, etc.

No judgement needed on routing wiring, hose, or tubing. If accuracy and consistency are important, specify part features, fixtures, and/or tools that assure that.

Practive  Poka-Yoke to mistake-proof assembly and other tasks.  See Section 10.7 in all editions of the  DFM book.

Use Readily available standard tools and standard torque settings, with only one at each workstation.

Ensure production needs no screening or matching of parts


High-Skill-Demand Processes that can be replaced by design


Alternatives to Hand Solder:

  • automatic wave solder or flow  soldering
  • all auto-placement , solder, and component selections  design guidelines must be obeyed 
  • - off-the-shelf cables and standard connectors


The American Welding Society predicts a welder shortage of 400,000 by 2024.  Since the average age of welders is 55, that means that new welds are not being trained!  

Fortunately, all large or complex weldments can be replaced by backward-compatible  "drop-in: replacements of assemblies of automatitclly CNC -machined parts   that are assembled rigidly  and precisely by DFM M techniques.  This 

Alternatives to welding

-assemble automatically built CNCparts: with ackward-compatible  replacements that save money now

Wiring; Point-to-Point between devises & circuit boards



These are the general principles. Pass around this article or URL to educate and stimulate interest

In customized seminars and webinars, these principles are presented in the context of your company amongst designers implementers, and managers, who can all discuss feasibility and, at least, explore possible implementation steps

In customized workshops, brainstorming sessions apply these methodologies to your most relevant products, operations, and supply chains.


If you want to discuss minimizing labor by phone ot e-mail, fill out this form:





Phone number

e-mail address

Type of products

 Other challenges, goals, and opportunities:

   To Submit, first enter "12" and hit "Enter" to bypass Robo Filter (required field)



Call or email aout how these principles can apply to your company:

Dr. David M. Anderson, P.E., CMC
fellow, American Society of Mechanical Engineers
phone: 1-805-924-0100
fax: 1-805-924-0200

copyright © 2020 by David M. Anderson

Book-length web-site on Half Cost Products: www.HalfCostProducts.com

[DFM Consulting]    [DFM Seminars]  [DFM Webinars]    [DFM Books]    [Credentials]    [Clients]   [Site Map

[DFM article]     [Half Cost Products site]   [Standardization article]   [Mass Customization article]   [BTO article]   [Rationalization article]